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Abstract   
 
Two finite elements based on the strain approach have been reformulated using the isoparametric 

formulation procedure. This isoparametric procedure presented in this work has been used for the first 

time in the case of these strain based elements in order to establish the element stiffness matrix 

numerically instead of having it analytically as usual. This will allow having the extension of the strain 

approach to other analysis. The two elements are membrane rectangular with four nodes. The first has 

the two essential translations at each of the four corner nodes whereas the second has in addition a 

drilling rotation. Performance of these elements is evaluated through a series of tests case, and the 

obtained results confirm their precision in linear and nonlinear analysis. 

 

Key words: strain approach, finite element, membrane element, isoparametric formulation, linear 

analysis.  

 

 

1. Introduction  

 

Many researchers have adopted for a long time the strain based approach for the development of 

new finite elements. The essential goal was especially related to the performance of these 

elements. The first developed elements were only concerned with curved ones [1, 2]. This 

approach was later extended to plane elasticity elements [3-5], for three-dimensional elasticity 

[6], for cylindrical shells [7-10], and for plate bending [11].  

The ability to solve linear and nonlinear problems is more important in many aspects of finite 

element work. In fact, exact solutions for both problems only exist for a few simple cases, so the 

use of the finite element method is required. However the use of the classical isoparametric 

displacement-based elements becomes increasingly inefficient and leads to a considerable gain on 

computing times for this type of analysis.  The advantages of the strain based finite elements 

have been illustrated on several elements [12, 13] compared with displacement-based ones. 

However the element stiffness matrix of the strain based elements is usually obtained by 

analytical integration. Then it turned out that the isoparametric reformulation of these elements is 

necessary in order to make their extension to other analysis 

In this context two finite elements based on the strain approach named SBRIE [14] (Strain Based 

Rectangular In Plane Element) and SBRIEIR [15] (Strain Based Rectangular In Plane Element 

with In plane Rotation) have been reformulated using the isoparametric procedure and are used 

in the elastic and elasto-plastic analysis. For the purpose of demonstration, some selected 

numerical examples are solved using these two elements, and the obtained results confirm their 

good precision in linear and nonlinear analysis. 
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2. Isoparametric formulation  

 

2.1. SBRIE element 
 

The rectangular element SBRIE is schematically shown in Figure 1. The lengths a and b are 

respectively the dimensions of the element in x and y direction.  

 

 
 

 

 

 

 

 

 

 

 

Figure 1. Coordinates and nodal point for the SBRIE element           

The assumed strain functions and the corresponding displacement fields of this element in 

Cartesian coordinates are given by 
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The displacement field is given in term of the nodal displacement as follows 

    qNU                                                                                                                                         (3) 

Where: 
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and the shape functions matrix [N] can be expressed as 
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Thus the assumed strain  
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    ayxQ ),(                                                                                                                                 (8) 

With the strain matrix [Q] is given by 

    ),(),( yxLyxQ                                                                                                                           (9) 

Where [L] is the differential operator matrix defined as 
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Then the eq. (9) becomes 
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And the displacement field can be expressed as 
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In isoparametric formulation case the displacement interpolations can be written 
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Then the shape functions [N] in eq. (5) can be written in the following form 
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Where the obtained shape functions in natural coordinates are given in Table 1 and consequently 

the strain matrix [B] of SBRIE is given in table 2.                          

                                      
Table 1. Shape functions of SBRIE element 
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Table 2. The components of the strain matrix [B]of the SBRIE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2. SBRIEIR element  

 

The rectangular element SBRIEIR is schematically shown in Figure 2. The lengths a and b are 

respectively the dimensions of the element in x and y direction.  

 

 
Figure 2. Co-ordinates and nodal point for the SBRIEIR element           

The assumed strain functions and the corresponding displacement fields of this element in 

Cartesian coordinates are given by 
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With the same previous procedure of calculation, the obtained shape functions matrix [N] and the 

strain matrix [B] of SBRIEIR are given consequently in Table 3 and table 4.                          
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Table 3. Shape functions of SBRIEIR element 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4. The components of the strain matrix [B]of the SBRIEIR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Linear numerical validation  

 

2.1. Mac-Neal’s elongated cantilever beam 
 

The problem of a cantilever beam shown in Figure 3 has been treated by Mac-Neal and Harder 

[16]. The beam is subjected to a concentrated force shearing at the free end (P=1) and to a pure 

bending moment (M=10). It has Young’s modulus E =10
7
, Poison’s ratio v=0.3, and a thickness 

t=0,1. 
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Figure. 3 Mac-Neal’s elongated beam subject to (1) end shear and (2) end bending 

 

The results of the normalized deflection at the free end presented in Tables 5 and 6 show that: 

 The isoparametric elements SBRIEIR and SBRIE give the same results than the elements 

SBRIEIR [15] and SBRIE [14] in both cases. 

 
Table 5. Normalized deflection Mac-Neal’s elongated beam subjected to end shear 

 

 

 

 

 

 

 

 
Table 6. Normalized deflection Mac-Neal’s elongated beam subjected to end pure bending 

 

 

 

 

 

 

 

 

2.2. Plane flexure of cantilever beam  

 

The objective of this problem is to calculate the deflection VA at the free end of a cantilever 

beam, with uniform cross-section, subjected to uniform vertical load with Young’s modulus 

E=10
7
, Poison’s ratio v=0.3 as shown in Figure 4. 

This problem has been treated by Batoz in [18]. Table 3 shows the results obtained for different 

mesh for this problem. 

 

 
Figure. 4 Cantilever beam subjected to uniform vertical load 

 

 

Load case (1): Force shearing at the free end P=1 

Mesh Isop SBRIEIR  SBRIEIR Isop SBRIE SBRIE 

6 x 1 

12x1 

0.9035 

0.9083 

0.9035 

0.9083 

0.9035 

0.9083 

0.9035 

0.9083 

Reference solution[17]              1,000 (0.1081) 

Load case (2):  Pure bending moment M=10 

Mesh Isop SBRIEIR SBRIEIR Isop SBRIE ISBRIE 

6 x 1 

12x1 

0.910 

0.910 

0.910 

0.910 

0.910 

0.910 

0.910 

0.910 

Reference solution [17]         1,000 (0.270) 
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Table 7. Displacement VA of the beam in plane flexure 
 

 

 

 

 

 

 

 

 

 

 

 

The results presented in Table 3 show that the two elements gives the same results for all mesh. 

 

3. Elasto-plastic analysis  

 

In this study two different yield criteria are employed which are; the Von Mises, and the Mohr 

Coulomb criterion. The constant stiffness method is adopted for the sake of its simplicity, which 

involves constant stiffness iterations in which non-linearity is introduced by iteravely modifying 

the right hand side loads vector. The usually elastic global stiffness matrix in such an analysis is 

formed ones only. Convergence is said to occur when stresses generated by the loads satisfy 

some yield or failure criterion within prescribed tolerances. The loads vector at each iteration 

consists of externally applied loads and self equilibrating body-loads. This analysis employs two 

methods for generating body-loads: visco-plastic and initial stress method to predict the response 

to loading of an elastic perfectly plastic material. All these methods and yield criteria are given in 

[19,20]. 

The aim of this study is to show the performance of the two elements SBRIE  SBRIEIR 

compared to the 8-Node quadrilateral element, to the analytical solutions in elasto-plastic 

analysis. Two numerical problems are presented; in each problem reduced integration is used for 

Gaussian quadrature. 

 

3.1. Bearing capacity analysis of purely coherent soil  

 

The elastic properties, Young’s modulus, Poisson’s ratio, the undrained cohesion and the uniform 

stress as consistent with [20], were chosen as E=10
5 

kN/m
2
, ν=0.3 , Cu=100 kN/m

2
, and 

q=1kN/m
2 

respectively. The Figure 5 shows the geometrical characteristics and meshing of the 

flexible strip footing. Bearing failure in this problem occurs when q reaches the Prandtl load 

given by:  

Cuqultime )2(                                                                                                                                                  (17) 

 

Elements 

Mesh Iso SBRIEIR  SBRIEIR Iso SBRIE SBRIE 

1 x 1 

 

2 x 1 

 

3 x 1 

 

  2.75* 

   (12)** 

3.43 

(18) 

3.56 

(24) 

2.75 

(12) 

3.43 

(18) 

3.56 

(24) 

2.76 

(12) 

3.44 

(18) 

3.56 

(24) 

2.75 

(12) 

3.43 

(18) 

3.56 

(24) 

Beam theory  [17]                VA= 4,03 

*VA vertical displacement in A; EI: exact integration; AI: 

analytical integration; HP hammer point; ** TNDF: Total 

number of degree of freedom 
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Figure 5. Geometry and mesh of the flexible strip footing 

As shown in figure 6 the results, found by the elements (SBRIE and SBRIEIR) have been plotted 

in the form of a dimensionless bearing capacity factor q/cu versus centerline displacement. These 

Results shows that these two finite elements have similar results than the Q8 element but the later 

element uses more degrees of freedom 
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Figure 6. Bearing stress versus centerline displacement 

3.2. Stability of a slope subjected to gravity loading 
 

In order to check the accuracy of the present elements SBRIE and SBRIEIR, in this example 

(figure 5), the geometrical characteristics, material properties, criterion and conditions were 

chosen as the same of those used in [20]. The factor of safety (F) of the slope is to be assessed, 

and this quantity is defined as the proportion by which tang φ (friction angle) and Cohesion C 

must be reduced in order to cause failure. The gravity loading vector is given by 

 dxdyNP T

a                                                                                                                      (18) 

Where γ is the unit weight of the material (γ=20kN/m
3
), and N is the shape functions.  
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Figure 5. Slope subjected to gravity loading 

Results presented in figure 6 in terms of the factor of safety and the maximum of displacement at 

convergence show that the convergence to the reference solution given in [20] with both elements 

(SBRIE and SBRIEIR) is quite rapid and similar to the Q8 element.  
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Figure 6. Maximum of displacement versus Factor of safety 

5. Conclusions 

 

Two finite elements based on the strain approach named SBRIE and SBRIEIR have been 

reformulated using the isoparametric procedure and are used in the elastic and elasto-plastic 

analysis. These elements are simples and contain higher order of polynomial functions. 

Numerical results obtained in both analyses, agree well with those from the theoretical solutions 

and show that these elements have the similar behavior than the Q8 element in elastoplastic 

analysis but they can be less expensive. These elements have quite rapid rate of convergence to 

the reference solutions for all tests, their performances have been demonstrated, and the 

advantages of using the strain approach in elasto-plastic analysis have been confirmed. 
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