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Abstract  

 
The natural sepiolite clay mineral was obtained from General Directorate of Mineral Research and 

Exploration (MTA) of Turkey and modified with 2.5 M of NaOH. The natural and modified sepiolite 

samples were characterized by XRF, XRD, N2 sorption, FTIR and SEM- EDS. The maximum As(III) 

and As(V) removal for natural sepiolite was  achieved at an initial pH of  7 and 5.0 , respectively; ca. 

2.2 mg/g  and 10.5 mg/g.  The maximum As(III) and As(V) removal for modified sepiolite was  

achieved at an initial pH of 5.0; ca. 45.4 mg g
-1

 and  38.4 mg g
-1

, respectively. While the Langmuir 

isotherm fitted well with results obtained from the As(V) of SP  and As(III) of Na-SP, the Freundlich 

isotherm model is more appropriate for the results obtained from As(V) of Na-SP. 
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1. Introduction  

 

Sepiolite (Si12)Mg8O30(OH)6(OH2)4 · 8H2O (magnesium hydrosilicate) is a natural clay mineral 

and has various industrial applications such as adsorptive, rheologic, and catalytic applications 

[1, 2]. Sepiolite has a large capacity for adsorbing heavy metals,  organic molecules, dyes and 

pesticides from wastewater due to its channels running parallel to the fiber axis [3].  The 

abundance of sepiolite mineral reserves as a raw material source in Turkey and its relatively low 

cost attract attention for its utilization in water treatment [4].  

Studies [5-13] showed that the sepiolite has high adsorption capacity  for the  removal of  heavy 

metal ions  such as Cu
2+

, Zn
2+

, Cd
2+

, Co
2+

, Pb
2+

 , Sr
2+

, and Cr
6+

 from water. However, there are a 

few studies for the removal of arsenic and manganese from drinking water by natural sepiolite 

[10, 14, 15].  

The problem of arsenic contamination in natural waters is a global interest concerning the 

different field researchers. Arsenic is found as form of As (V) and As (III) in groundwater in 

many regions around the world. Arsenic poisoning in Japan, China, Mexico, Argentina, India, 

and USA has been reported [16-18]. A maximum contaminant level for arsenic has been 

recommended to reduce in drinking water as 10 µg L
-1 

by the World Health Organization 

(WHO). Therefore, research on improving the current methods or developing low-cost 

alternatives and new materials to remove arsenic from industrial effluents or drinking water is 

essential [19].   

The aim of this study was to evaluate the capacity of natural and modified sepiolite to remove 

As(III) and As(V) from aqueous media via adsorption. The influence of the initial pH value, the 

initial metal concentration and the contact time were investigated. The chemical composition, 

morphology, phase composition, specific surface area and pore volume, and qualitative 

composition of the natural and modified sepiolite were determined.  
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2.  Materials and Method  

 

2.1. Preparation of adsorbent 

 

The natural sepiolite (SP) was obtained from General Directorate of Mineral Research and 

Exploration (MTA) of Turkey. The sepiolite was first ball milled to particle size in a range of 

0.25–0.5 mm and dried in an oven at 120 °C overnight. The sepiolite was transformed to the Na-

form by a treatment with a 2.5 M NaOH solution at 80 °C. After washing and drying, the sample 

was calcined at 500 °C for 2 h and denoted as Na- SP. 

 

2.2. Characterization of samples 

The chemical composition of the natural and modified sepiolites was analyzed using Energy –

dispersive X- Ray spectroscopy (EDS) (OXFORD INSTRUMENTS INCA X-Act/51-ADD0013) 

on a scanning electron microscope (SEM) (JEOL/ JSM-6610). The morphology of the natural 

and modified sepiolites was examined by a Scanning Electron Microscope (SEM) (JEOL/ JSM-

6610). X-ray powder diffraction (XRD) patterns of the sepiolites were recorded on a Rigaku 

SmartLab X-ray diffractometer using non-monochromotographic Cu Kα1-radiation (40 kV, 

40 mA, λ = 1.5). Scanning was in the range 5–65 °C of 2θ. The specific surface area and 

micropore volume of the samples were measured using N2 adsorption–desorption (AUTOSORB 

1C) at − 196 °C. The surface area, total pore volume and micropore volume were determined by 

multipoint BET, t-plot and DR (Dubinin–Radushkevic), respectively. Infrared absorption 

measurements of the natural and modified sepiolites were carried out using a Fourier Transform 

Infrared (FTIR) spectrophotometer (Bruker Optics- Alpha). The FTIR spectra were obtained in 

the wavenumber range 650–4000 cm
− 1

 using single bounce ATR with diamond crystal. 

2.3. Adsorption experiments  

Batch adsorption experiments were carried out in glass flasks (0.1 L) using a magnetic shaker at 

25 °C at a constant agitation of 200 rpm. In the kinetic studies, suspensions containing a range of 

25–100 mg·L
− 1

 arsenic were stirred for different periods of time at initial pH of 5. After the 

reaction, suspensions were centrifuged at 5000 rpm for 5 min in order to separate the solution and 

the solids. The initial and non-adsorbed concentrations of arsenic in supernatants were 

determined by Atomic Absorption Spectroscopy (AAS) (GBC A4382). All results were 

expressed as averaged values of duplicate tests. 

The adsorption capacity (qe, mg·g
− 1

) and removal percentage (%) of arsenic were determined 

using Eq.2.1 and 2.2. 
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where C0 and Ce are the initial and final concentrations of arsenic (mg L
− 1

), V is the volume of 

solution (L) and m is the amount of adsorbent (g). Equilibrium data for natural and modified 

sepiolites were fitted to the Langmuir and Freundlich models as reported in reference [20]. 

 

3.  Results and Discussion 

 

3.1. Chemical composition of sepiolites  

 

SEM-EDS analysis in Table 1 indicate that sepiolite is  the major components along with traces 

of Al, K and Fe oxides. The treatment of the SP with NaOH leads to insignificant change of 

almost all cations except dealumination and desilication in SP. The removal of Mg
2+ 

and
 

formation of hydroxysodalite are significant. 

 
Table 1. The composition of natural and modified sepiolites. 

Sample Mg Al Si K Na Ca Ti Fe Cl 

SP 20.08 9.45 66.97 0.46 - 0.97 0.20 1.68 0.05 

Na-SP  14.76 4.24 27.12 0.55 46.86 1.84 - 4.42 - 

 

3.2. XRD results of samples 

 

A comparison of XRD patterns of SP and Na-SP are shown in Fig. 1. The presence of peaks 

distinctive for sepiolite is obvious. After the treatment with NaOH, peaks at 21, 35° of 2θ 

appeared because of the formation of hydroxysodalite as reported by Kang et al. [21]. 

Additionally, peaks at 7, 19 and 23° of 2θ disappeared because of significant dealumination and 

desilication of the SP. 

3.3.Surface area and pore size distribution of samples 

The nitrogen adsorption and desorption isotherms of natural and modified sepiolites are shown 

in Fig. 3, and the surface characteristics calculated from isotherms are listed in Table 2. The 

shape of SP is consistent with Type I according to the I.U.P.A.C [25], which is characteristic of 

microporous materials with a plateau at high relative pressures. The BET surface areas of the SP 

and Na-SP samples demonstrated that treatment with NaOH caused the formation of mesopores 

in the solid particles, resulting in a lower surface area, revealing 187.8 m
2
 g

-1 
for SP and 7.09 m

2
 

g
-1 

for Na-SP. The pore diameters change in the same direction, varying from 194 Å to 264 Å  

through significant desilication and dealumination.  
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Figure 1. XRD patterns of natural and modified sepiolites 

 

3.4.  SEM images of samples 

 

SEM images of SP and Na-SP are shown in Fig. 2. After the NaOH treatment, the particles 

seemed to be melted and became very irregular, indicated that the severe desilication and 

dealumination may destroy the structure to some extent as seen in the XRD pattern [22]. NaOH 

treatment led to not only a decrease in particle size but also crystal deagglomeration as reported 

in references [23, 24].  

 

  

     Figure 2. SEM images of natural and modified sepiolites. 

 

Table 2. Surface area and pore characteristics of natural and modified sepiolites 

Sample SA (m
2
 g

-1
)

a
 VT (cm

3
 g

-1
)

b
 VMP (cm

3
 g

-1
)

c
 d (Å)

d
 

SP 187.8 0.91 5.66x10
-2

 194 

Na-NSP 7.09 0.04 5.4x10
-4

 268 
a
 Multipoint BET method ;  

b
Volume adsorbed at p/p0 = 0.99.; 

c
Micropore volume calculated by DR method ; 

d
 

Average pore diameter 
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http://www.sciencedirect.com/science/article/pii/S0032591014004689#f0015
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Figure 3. N2 adsorption–desorption isotherm and differential pore size distribution of natural and 

modified sepiolites 

 

3.5. FTIR of the samples 

 

The FTIR spectra of the SP and Na-SP samples are shown in Fig. 4. FTIR bands of the SP and 

Na-SP samples can be observe in three regions [26, 27].  

Bands in the 4000–3000 cm
− 1

 range correspond to the vibrations of the Mg–OH group 

(3690 cm
− 1

), coordinated water (3568 cm
− 1

) and zeolitic water (at 3422 cm
− 1

); the intensity of 

these bands disappeared after the alkali treatment due to dealumination and removal of Mg cation 

based on EDS results.  

The band at 1671 cm
− 1

 is due to the vibration of zeolitic water, disappeared after the NaOH 

treatment.  

Bands in the 1200–400 cm
− 1

 are related with silicate. The band centered at 1016 and 

460 cm
− 1

 corresponds to Si–O–Si vibration that NaOH treatment not only shifts, which it lower 
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wavenumbers from 1016 cm
− 1

  to 876 cm
− 1

 , but also decreases its intensity. Bands at 1215, and 

980 cm
− 1

 correspond to Si–O bonds that they disappeared after NaOH treatment.  Bands at 690 

and 637 cm
− 1

 correspond to Mg–OH bond vibrations. After alkali treatment, the band intensity at 

637 cm
− 1

 decreased and the band 690 cm
− 1

disappeared because of removal of manganese as seen 

in EDS results. 

 

   

Figure 4. FTIR spectra of the natural and modified sepiolites 

3.6. Adsorption of arsenic by natural and modified sepiolites                                     

3.6.1. Effect of initial pH 

 

The initial pH value of the solution is an important controlling parameter in the arsenic 

adsorption process because it affects the chemistry of arsenic [30, 31] and surface properties of 

the adsorbent.  

The dependence of the sorption capacity on the pH value is shown in Table 3. In the case of As 

(III) and As (V), maximal adsorption capacity of the SP is obtained at 1.5 of pH. With increasing 

initial pH value, the adsorption capacity of SP decreased because of an increase in negative 

charge of the adsorbent surface. On the other hand, maximal adsorption capacity of the SP for As 

(III) and As (V) were obtained at 5 of pH. This difference can be explained by the changed 

surface charge of natural sepiolite by NaOH treatment.  

 

3.6.2. Sorption isotherms studies and modeling 

 

Adsorption capacity of SP and Na-SP with adsorption time is shown in Fig. 6. The equilibrium 

time of As(V) on SP and Na-SP  were determined as 100 min and 300 min respectively and  the 

equilibrium time of As(III) on Na-SP was determined as 300 min. Slow adsorption rate of arsenic 

on Na-SP can be modification of the structure and surface with NaOH treatment.   
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The isotherm constants calculated from experimental data in Fig. 6 are shown in Table 3. For 

adsorption of As (V) on SP and As(III) on the Na-SP the correlation coefficients (R
2
) obtained 

from the Langmuir isotherm model were higher than those obtained from the Freundlich model  

and therefore, the Langmuir equation represents the adsorption processes better. Adsorption of 

As (V) on Na-SP showed opposite behavior. The maximum adsorption capacity of As(V) on the 

SP and Na- SP is 10.52 and 38.46, respectively that treatment of SP with  NaOH increased almost 

four times its adsorption capacity for As(V). Because As(III) adsorption capacity of  SP is low, 

the equilibrium time investigation for As(III) on SP was not studied. In contrast to SP, maximum 

adsorption capacity of Na-SP for As (III) is found as 45.4 mg g
-1

.  
 

Table 3. The influence of pH on the adsorption capacity (mg g
-1

) of natural and modified sepiolites for As(III) and 

As(V). 

Sample SP Na-SP 

pH As(III) As(V) As(III) As(V) 

1.5 8.92 26.84 5.68 5.07 

3 n.d 1.77 2.99 0.78 

5 n.d 13.48 46.70 35.96 

7 2.15 2.62 n.d 0.11 

9 2.05 1.45 - - 

 

 

 
 

 

Figure 6. The plot of arsenic ions removal rates against adsorption time (200 rpm, 0.02 g, 25 
o
C). 

 

 

 

 

 

Table 4. Adsorption isotherm constants of As (III) and As (V). 
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Sample  Langmuir isotherm Freundlich isotherm 

Qmax(mg  g
− 1

) B (L mg
− 1

) R
2
 kF  (L g

− 1)
 1/n R

2
 

 As(V) 

SP 10.52 0.0034 0.95 0.036 1.06 0.93 

Na-SP 38.46 0.44 

 

0.87 26.84 0.07 0.94 

 As(III) 

Na-SP 45.4 0.13 0.89 18.17 0.18 0.63 

 

Conclusions 

 

NaOH treatment increases arsenic adsorption capacity for both arsenic species (III and V).  While 

the Langmuir isotherm fitted well with results obtained from the As(V) of SP  and As(III) of Na-

SP, the Freundlich isotherm model is more appropriate for the results obtained from As(V) of Na-

SP. 
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