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Abstract  

 

Deformation due to pressure variations of human blood vessel embedded in a soft 

tissue is considered. Due to symmetry it suffices to consider only a cross section 

subject to a uniform pressure acting normally through the vessel’s wall.  The 

nonlinearity of the vessel’s wall is modeled by an isotropic hyperelastic Fung type 

stress strain model.  The surrounding soft tissue is modeled by infinitely many 

nonlinear springs with two parameters. The equations of equilibrium are formulated 

as nonlinear boundary value problem. A differential correction numerical scheme is 

used to solve the nonlinear governing equations and the symmetrical post-buckling 

shapes of the cross section are presented. 
 

 

Key words: Blood vessel, Blood pressure, Buckling and Post-buckling, Nonlinear boundary value 

problem  

 

 

1. Introduction  

 

Buckling and post-buckling of an embedded collapsible blood vessel affects the blood flow rate 

through this vessel. The vessel may collapse due to an increase in the pressure difference between 

the inside and outside of the vessel. The surrounding soft tissue is modelled as infinitely many 

number of linear [1] or nonlinear [2] springs. As the pressure difference exceeds a critical value, 

buckling occurs leading to symmetrical shapes of the vessel’s wall with 2N axes of symmetry. 

Increasing the pressure further gives post-buckling shapes. Both, buckling and post-buckling 

shapes are affected by the characteristics of the soft tissue and the vessel’s wall parameters. The 

phenomena of collapsible tubes was used to help explaining blood flow rate and blood pressure 

in veins [3,4]. 

 The relation between the angular displacement of a local tangent to the vessel with an 

arbitrary axis and the arch length describes the shape of the cross section. In the linearized 

problem this relation is linear giving a circular cross section. The jacobian matrix of the system 

evaluated at this special solution becomes singular for certain values of the pressure difference, 

the smallest of which is called the critical buckling load. Beyond this value of the pressure 

difference, periodic shapes of the cross section are obtained. The periodicity conditions of such 

shapes will be used in solving the governing equations, numerically. 

 In the second section the governing equations will be formulated. In the third section an 
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iterative corrective numerical technique will be used to solve the nonlinear governing equations. 

In the fourth section graphical representations of the post-buckling shapes of the cross section are 

presented and the effect of nonlinearities are discussed. Finally, some conclusions are drawn in 

the fifth section. 

 

2. Governing Equations  

 

2.1. Stress Strain Models 

 

The stress strain model provided by [5,6], based on bending experiment, is used to model the 

blood vessel wall  

 

 1 ,E e                                                          (1) 

where  is the stress, E is the Young’s modulus,  is the strain, and   ,   are material 

parameters. For small values of  , (1) simplifies to 
2E                                                                           (2) 

The surrounding tissue is modeled as nonlinear springs obeying the generalized Hooke’s law 

1 2( ) ( )F s k s k g s                                                             (3) 

where 
1k , 

2k are positive constants and ( )g s is an odd function of s .  

 

2.2. Equilibrium Equations  

 

Figure 1 shows an elemental length ds of the blood vessel’s cross section in which   is the 

angular displacement measured from the x axis, T is the tensional force, M is the bending 

moment, S is the shearing force, and 
nq , 

tq are stresses along the local intrinsic coordinates 

 

 
 

Figure 1. An Element Length 

Force equilibrium along the normal and tangential directions respectively gives 
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nTd q ds dS     (4) 

 

0tq ds Sd dT      (5) 

Equilibrium of moments gives 

dM Sds  (6) 

 

Equations (4)-(6) have four unknown quantities, functions of the independent variable s , and 

one additional equation is needed. This equation is  

 

A
M dA   (7) 

where  is the strain to curvature ratio and A is the cross-sectional area of the element. 

Substituting (2) into (7) gives 

 

2

A

d d d
M Ez z z zdA

ds ds ds

  


 
     
                           (8) 

Or 

2

2 3

d d d
M EI I

ds ds ds

  
 

  
  (9) 

where 
2I and 

3I are the second and third area moment of inertia respectively. Substituting (9) into 

(6) the shear force can be represented as 
2 2

2

2 32 2
2

d d d
S EI I

ds ds ds

  
 

  
  (10) 

Substituting (10) into (5) yields 

 
2 2

2

2 32 2
2 0t

d d d d dT
q EI I

ds ds ds ds ds

   


 
     

     

  (11) 

Dividing (4) by dsgives 

n

d dS
T q

ds ds


 

 
  (12) 

Differentiating (12) with respect to s gives  

2 2

2 2

ndqdT d d d S
T

ds ds ds ds ds

  
  

    
  (13) 

We introduce dimensionless quantities normalized by system parameters defined by:  

3 3 2

3

2 2 2

2ˆ, , ,n t
n t

q R q R Is
s q q

R EI EI EI R




 
      (14) 

Differentiating (10) with respect to s and using (14) gives 

2
3 2

3 2
ˆ ˆ1

dS d d d d
sign

ds ds ds ds ds

   
 

    
      

    

  (15) 

Substituting (15) into (12) and using (14) gives 
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2
3 2

3 2
ˆ ˆ1 n

d d d d d
T sign q

ds ds ds ds ds

    
 

    
      

    

  (16) 

From (5) and (14) we get    

2

2
ˆ1 t

dT d d d
q

ds ds ds ds

  


 
    

 

  (17) 

Figure 2 depicts the geometry of the deflection of element length allowing point A to move to an 

arbitrary location B with coordinates (x,y). We obtain the equations 

cos , sin
dx dy

ds ds
     (18) 

and 

2 2( cos ) ( sin )d a s x a s y      (19) 

 

 
 

 

Figure 2. Deflection Geometry 

 

Since the elongation in the spring due to deflection is given by  

1z d a    BC AC   (20) 

the spring force per unit area per unit length is given by 

1 2( ) ( )F z k z k g z    (21) 

This spring force in (21) together with the pressure difference  

0 ,e iP P P F     (22) 
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where 
0F is initial spring force, give the stresses in the normal and tangential directions 

   
( )

cos cos sin sint

F z
q a s x a s y

d
      

   (23) 

   
( )

sin cos cos sinn

F z
q a s x a s y P

d
       

   (24) 

Knowing that the cross section may take symmetrical shapes with 2N axes of symmetry. The 

boundary condition for such symmetrical shapes are  

 
2

2

0

(0) , 0, 0) 0
2

s

d
y

ds

 




                 (25a) 

 

   
2

2 2 2 2

22
02

2 2
, 0,

2 s s
Ns

N

d
x y x y

N N ds




   


 


 
      

 

             (25b) 

 

3. Numerical Solution  

 

The equilibrium equations can be written as a vector differential equation 

 

( , )
d

s
ds


q

f q  (26) 

where q is the state vector and ( , )sf q is a nonlinear vector function 

 

2

2
,

d

ds

d

ds

T

x

y







 
 
 
 
 
 

  
 
 
 
 
  

q

 
 

 

2

3

2

2 4 2 3

2

2 2 3

1

1

ˆ ( )

ˆ1 | |

ˆ1 | |

cos

sin

n

t

q

q

q q q sign q q

q

q q q q

q

q







 
 
 
  
 
   
 

   
 
 
 
 

f

    ,             (27) 

 

with the boundary conditions  

1 3 6(0) , (0) 0, (0) 0
2

q q q


     (28a) 

 

1 3

2 2 2
, 0,

2
q q

N N N

      
     

   
  (28b) 

 

   2 2 2 2

25 6 5 6
0s s

N

q q q y 
 

     (28c) 
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The problem (26), (28) is a nonlinear boundary value problem which we solve numerically using 

a differential correction scheme as an application of Newton’s method [7]. In such a scheme the 

state equations, together with the associated state transition matrix differential equation, are 

numerically integrated using arbitrary initial conditions for [0,2 / ]s N . If, at 2 /s N , the 

periodicity conditions are satisfied the correction process is terminated. Otherwise the Newton’s 

equation is applied to update the initial conditions. 

 

4. Numerical Results  

 

Figures 3-6 shows post-buckling shapes for a blood vessel in which 
1 3k  ,  

2 1k  , ( ) tanh( )g z z

and ˆ 0.05  .  

 

Figure 3. 2N  , 7.7P                                                             Figure 4. 3N  , 14P   

 

                                                

 

 

      Figure 5. 4N  , 26.2P                                                      Figure 6. 5N  , 33P                                         
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Figures 7-9 show the effect of the nonlinearity represented by ̂ on the initial conditions 

(0), (0), (0)
d

T x
ds

 required for convergence for the case at 4N  , 26.2P  , 
1 3k  ,  

2 1k  , and 

( ) tanh( )g z z . Both (0), (0)
d

T
ds

 decrease when ̂  increases while (0)x increases by increasing ̂  

 

 

Figure 7. ̂ vs (0)
d

ds

                                                                     Figure 8. ̂ vs (0)T  

 

 

 

 

 
 

Figure 9. ̂ vs (0)x  
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5. Conclusions  

 

Equations of equilibrium that govern the deformation of a blood vessel embedded in soft tissue 

are obtained using a nonlinear stress-strain model presented by Fung [5,6]. The equations are 

integrated numerically and effects of the model’s nonlinearity on the post buckling shapes are 

demonstrated. 
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